Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells

نویسندگان

  • Junhao Deng
  • Yiling Zhang
  • Yong Xie
  • Licheng Zhang
  • Peifu Tang
چکیده

Spinal cord injury (SCI) is an intractable and worldwide difficult medical challenge with limited treatments. Neural stem/progenitor cell (NS/PC) transplantation derived from fetal tissues or embryonic stem cells (ESCs) has demonstrated therapeutic effects via replacement of lost neurons and severed axons and creation of permissive microenvironment to promote repair of spinal cord and axon regeneration but causes ethnical concerns and immunological rejections as well. Thus, the implementation of induced pluripotent stem cells (iPSCs), which can be generated from adult somatic cells and differentiated into NS/PCs, provides an effective alternation in the treatment of SCI. However, as researches further deepen, there is accumulating evidence that the use of iPSC-derived NS/PCs shows mounting concerns of safety, especially the tumorigenicity. This review discusses the tumorigenicity of iPSC-derived NS/PCs focusing on the two different routes of tumorigenicity (teratomas and true tumors) and underlying mechanisms behind them, as well as possible solutions to circumvent them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018